В.В. Гончарук, В.Ф. Вакуленко, Т.Н. Ситниченко, Ю.О. Швадчина, А.Н. Сова

ФОТОКАТАЛИТИЧЕСКАЯ ДЕСТРУКЦИЯ ФУЛЬВОКИСЛОТ ОЗОНОМ И КИСЛОРОДОМ

Институт коллоидной химии и химии воды им. А.В. Думанского НАН Украины, г. Киев

Исследована фотокаталитическая деструкция речных фульвокислот в водной среде озоном и кислородом. Определены преимущества каталитического и фотокаталитического озонирования их растворов по сравнению с озонированием и O_3 /УФ-обработкой. Фотокаталитическое озонирование обеспечивает наиболее высокую степень деструкции фульвокислот (93 % по общему органическому углероду) при меньших продолжительности и удельном расходе озона по сравнению с другими способами окисления.

Ключевые слова: диоксид титана, кислород, окисление, озон, фотокатализ, фульвокислоты.

Введение. Озон является сильным, но селективным окислителем, взаимодействующим с высокой скоростью с органическими соединениями лишь некоторых классов. Кроме того, озонирование, как известно, не обеспечивает глубокую деструкцию органических примесей природных и сточных вод (т. е. существенное снижение концентрации общего органического углерода (ООУ)), поскольку крайне медленно реагирует с промежуточными продуктами их озонолиза. Поэтому с каждым годом повышается интерес к различным комбинированным процессам, в которых окисление примесей осуществляется высокоактивными свободными радикалами, в частности к каталитическому и фотокаталитическому озонированию [1-3].

Окисление органических соединений озоном катализируют ионы и оксиды некоторых металлов, а также металлы и оксиды металлов, иммобилизованные на различных носителях [1].Так, деструкция природных органических веществ (ПОВ) озоном существенно ускорялась в присутствии $\mathrm{Mn^{2+}}$, $\mathrm{Ag^{+}}$ [1], $\mathrm{TiO_2}$ [1], $\mathrm{Cu/TiO_2}$ [4], $\mathrm{TiO_2/Al_2O_3}$ [5, 6], $\mathrm{Al_2O_3}$ [7], $\mathrm{Cu/Al_2O_3}$ [8], FeOOH [9, 10], $\mathrm{CeO_2}$ [10]. В зависимости от удельной дозы озона (1,7 – 4,5 мг $\mathrm{O_3/Mr}$ $\mathrm{OOY_{ucx}}$) степень деструкции ПОВ при каталитическом озонировании их модельных растворов или речных вод повышалась в 1,5 – 5 раз по сравнению с озонированием [1, 4, 7 – 9]. Однако, © В.В. ГОНЧАРУК, В.Ф. ВАКУЛЕНКО, Т.Н. СИТНИЧЕНКО, Ю.О. ШВАДЧИНА, А.Н. СОВА, 2013